skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cai, Bo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Mongolian racerunner, Eremias argus, is a small lizard endemic to Northeast Asia that can serve as an excellent model for investigating how geography and past climate change have jointly influenced the evolution of biodiversity in this region. To elucidate the processes underlying its diversification and demography, we reconstructed the range-wide phylogeographic pattern and evolutionary trajectory, using phylogenetic, population genetic, landscape genetic, Bayesian phylogeographic reconstruction and ecological niche modeling approaches. Phylogenetic analyses of the mtDNA cyt b gene revealed eight lineages that were unbounded by geographic region. The genetic structure of E. argus was mainly determined by geographic distance. Divergence dating indicated that E. argus and E. brenchleyi diverged during the Mid-Pliocene Warm Period. E. argus was estimated to have coalesced at~0.4351 Ma (Marine Isotope Stage 19). Bayesian phylogeographic diffusion analysis revealed out-of-Inner Mongolia and rapid colonization events from the end of the Last Interglacial to the Last Glacial Maximum, which is consistent with the expanded suitable range of the Last Glacial Maximum. Pre-Last Glacial Maximum growth of population is presented for most lineages of E. argus. The Glacial Maximum contraction model and the previous multiple glacial refugia hypotheses are rejected. This may be due to an increase in the amount of climatically favorable habitats in Northeast Asia. Furthermore, E. argus barbouri most likely represents an invalid taxon. The present study is the first to report a range-wide phylogeography of reptiles over such a large region in Northeast Asia. Our results make a significant contribution towards understanding the biogeography of the entire Northeast Asia. 
    more » « less
  2. Nanoparticles (NPs) typically display a wide distribution of different sizes in aquatic environments, yet little information is available on the impact of particle size dispersity on organismal uptake and elimination. This study investigated uptake and elimination of polyvinylpyrrolidone-coated platinum nanoparticles (PVP-PtNPs) of different sizes ( e.g. , 20.0 ± 4.8 nm, 40.5 ± 4.1 nm, and 70.8 ± 4.2 nm) by the estuarine amphipod Leptocheirus plumulosus . Accumulation and elimination were determined by measuring total Pt body burden in amphipods exposed to PtNPs using inductively coupled plasma-mass spectroscopy, as well as the mass and number PtNP body burden using single particle-ICP-MS (sp-ICP-MS). L. plumulosus accumulated Pt from PtNP suspensions of different sizes from water exposure, mostly ( e.g. , >90%) as PtNPs rather than as dissolved Pt. Mass- and number-based uptake increased with decreases in PtNP size whereas mass- and number-based elimination increased with increasing PtNP size. The residual whole-animal body burden of PtNPs after 48 h elimination increased with decreases in PtNP size, with residual body burdens approximately two-fold higher for amphipods exposed to 20 nm PtNPs than amphipods exposed to 70 nm PtNPs. PtNP influx rate ( k uw ) increased with decreasing NP size, with k uw s of 1.07 ± 0.31, 0.82 ± 0.22, and 0.67 ± 0.10 μg g −1 d −1 for 20 nm, 40 nm, and 70 nm PtNPs, respectively. PtNP efflux rate ( k e ) increased with increasing PtNP size, with k e s of 0.31 ± 0.08, 0.66 ± 0.04, and 0.83 ± 0.07 d −1 for 20 nm, 40 nm, and 70 nm PtNP, respectively. When exposed to mixtures of 40 and 70 nm PtNPs with equal masses, surface areas, or number concentrations of 40 nm and 70 nm PtNPs, L. plumulosus accumulated higher numbers of the 40 nm PtNPs than 70 nm PtNPs from all mixtures. The increased exposure concentration of 70 nm PtNPs in the mixture did not affect the uptake of 40 nm PtNPs, suggesting that in a polydispersed NP suspension the uptake of a given size fraction is independent of other size fractions in the mixture. 
    more » « less
  3. null (Ed.)